News & Events

Headlines

Titanium Atom That Exists in Two Places at Once in Crystal to Blame for Unusual Phenomenon

12-07-20

Crystals are usually good at conducting heat. By definition, their atomic structure is highly organized, which allows atomic vibrations—heat—to flow through them as a wave. Austin Minnich, Professor of Mechanical Engineering and Applied Physics, has discovered why a perfect crystal is not good at conducting heat, although it seemingly should be. "We have found that quantum mechanical effects can play a huge role in setting the thermal transport properties of materials even under familiar conditions like room temperature," says Austin Minnich. [Caltech story]

Tags: APhMS research highlights MCE Austin Minnich

Robotics Engineers Take on COVID-19

11-18-20

Methods that were originally created to help robots to walk and autonomous cars to drive safely can also help epidemiologists predict the spread of the COVID-19 pandemic. Professor Aaron Ames and colleagues took these tools and applied them to the development of an epidemiological methodology that accounts for human interventions (like mask mandates and stay-at-home orders). By utilizing the U.S. COVID-19 data from March through May, they were able to predict the infection wave during the summer to high accuracy. "This is the greatest health challenge to face our society in a generation at least. We all need to pitch in and help in any way we can," Ames says. [Caltech story]

Tags: research highlights MCE CMS Aaron Ames Andrew Singletary

Lab-Grown Earthquakes Reveal the Frictional Forces Acting Beneath Our Feet

09-03-20

Simulating an earthquake on a miniature scale in a laboratory known unofficially as the "seismological wind tunnel," engineers and seismologists have produced the most comprehensive look to date at the complex physics of friction driving destructive thrust-fault earthquakes. "Simulating earthquakes in a lab lets us observe how these brief and violent events grow and evolve by ‘slowing down' their motion through high-speed photography and optics," says Ares Rosakis, the Theodore von Karman Professor of Aeronautics and Mechanical Engineering. [Caltech story]

Tags: research highlights GALCIT MCE Ares Rosakis

A Pathway to Longer-Lasting Lithium Batteries

08-06-20

The energy density of batteries have been a major challenge for consumer electronics, electric vehicles, and renewable energy sources. Professor Julia R. Greer has made a discovery that could lead to lithium-ion batteries that are both safer and more powerful. Findings provide guidance for how lithium-ion batteries, one of the most common kinds of rechargeable batteries, can safely hold up to 50 percent more energy. "Every power-requiring application would benefit from batteries with lithium instead of graphite anodes because they can power so much more," says Greer. "Lithium is lightweight, it doesn't occupy much space, and it's tremendously energy dense." [Caltech story]

Tags: APhMS research highlights MCE Julia Greer

Ari Rosner Develops Tool That Configures Socially-Distanced Students In Classrooms

07-31-20

Mechanical engineering student Ari Rosner, has developed an interactive Excel worksheet powered by advanced algorithms to help schools with social distancing in classrooms. Schools can plug a room’s dimensions and social distancing parameters into the worksheet, and the most efficient configuration of students for a designated classroom would automatically be mapped out. Rosner’s model situates students in rows or in a hexagonal pattern, depending on a room’s shape, in order to safely maximize space. "I cried when I saw how this worked," said Rachael Burton, the development director at a small private school in Brooklyn, New York. "I knew Ari’s mathematical chart could save our lives." [Forbes story]

Tags: research highlights MCE Ari Rosner

Microstructures Self-Assemble into New Materials

03-03-20

A new process developed at Caltech makes it possible for the first time to manufacture large quantities of materials whose structure is designed at a nanometer scale—the size of DNA's double helix. Pioneered by Professor Julia R. Greer, "nanoarchitected materials" exhibit unusual, often surprising properties—for example, exceptionally lightweight ceramics that spring back to their original shape, like a sponge, after being compressed. Now, a team of engineers at Caltech and ETH Zurich have developed a material that is designed at the nanoscale but assembles itself—with no need for the precision laser assembly. "We couldn't 3-D print this much nanoarchitected material even in a month; instead we're able to grow it in a matter of hours," says Carlos M. Portela, Postdoctoral Scholar. "It is exciting to see our computationally designed optimal nanoscale architectures being realized experimentally in the lab," says Dennis M. Kochmann, Visiting Associate. [Caltech story]

Tags: APhMS research highlights GALCIT MCE Julia Greer Dennis Kochmann postdocs Carlos Portela

Team CoSTAR Takes First Place in Underground Robot Competition

02-27-20

A team including Caltech researchers and JPL earned top honors in the DARPA Subterranean Challenge. Whether robots are exploring caves on other planets or disaster areas here on Earth, they need to be able to navigate a location and seek out objects of interest without access to GPS or human guidance. The Subterranean Challenge tests this kind of cutting-edge technology. "One of the two courses we had to run had multiple levels, so it was great that the Boston Dynamics robots were fantastic on stairs," says Joel Burdick, the Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering and Bioengineering and JPL research scientist, and the leader of the Caltech campus section of the CoSTAR team. [Caltech story]

Tags: research highlights MCE Joel Burdick

Ultrasound Can Selectively Kill Cancer Cells

02-05-20

Professor Michael Ortiz and Professor Morteza Gharib are exploring a new technique that could offer a targeted approach to fighting cancer. Low-intensity pulses of ultrasound have been shown to selectively kill cancer cells while leaving normal cells unharmed. In the past, ultrasound waves have been used as a cancer treatment with high-intensity bursts resulting in killing cancer and normal cells. [Caltech story]

Tags: research highlights GALCIT MedE MCE Morteza Gharib Michael Ortiz

Bionic Jellyfish Swim Faster and More Efficiently

01-30-20

John Dabiri, Centennial Professor of Aeronautics and Mechanical Engineering, has developed a tiny prosthetic that enables jellyfish to swim faster and more efficiently than they normally do, without stressing the animals. Dabiri is envisioning a future in which jellyfish equipped with sensors could be directed to explore and record information about the ocean. "Only five to 10 percent of the volume of the ocean has been explored, so we want to take advantage of the fact that jellyfish are everywhere already to make a leap from ship-based measurements, which are limited in number due to their high cost," Dabiri says. "If we can find a way to direct these jellyfish and also equip them with sensors to track things like ocean temperature, salinity, oxygen levels, and so on, we could create a truly global ocean network where each of the jellyfish robots costs a few dollars to instrument and feeds themselves energy from prey already in the ocean." [Caltech story]

Tags: research highlights GALCIT MCE John Dabiri

Researchers Develop New Quantum Algorithm

12-19-19

Austin Minnich, Professor of Mechanical Engineering and Applied Physics, Fernando Brandão, Bren Professor of Theoretical Physics, and Garnet Chan, Bren Professor of Chemistry, have developed an algorithm for quantum computers that will help them find use in simulations in the physical sciences. The new algorithm allows a user to find the lowest energy of a given molecule or material. Many people are interested in how to simulate the ground states of molecules and materials. "If we want to do a simulation of water, we could look at how water behaves after it has been blasted into a plasma—an electrically charged gas—but that's not the state water is usually found in; it is not the ground state of water. Ground states are of special interest in understanding the world under ordinary conditions," says Chan. [Caltech story]

Tags: research highlights Austin Minnich Fernando Brandão Garnet Chan