News & Events

Headlines

Microstructures Self-Assemble into New Materials

03-03-20

A new process developed at Caltech makes it possible for the first time to manufacture large quantities of materials whose structure is designed at a nanometer scale—the size of DNA's double helix. Pioneered by Professor Julia R. Greer, "nanoarchitected materials" exhibit unusual, often surprising properties—for example, exceptionally lightweight ceramics that spring back to their original shape, like a sponge, after being compressed. Now, a team of engineers at Caltech and ETH Zurich have developed a material that is designed at the nanoscale but assembles itself—with no need for the precision laser assembly. "We couldn't 3-D print this much nanoarchitected material even in a month; instead we're able to grow it in a matter of hours," says Carlos M. Portela, Postdoctoral Scholar. "It is exciting to see our computationally designed optimal nanoscale architectures being realized experimentally in the lab," says Dennis M. Kochmann, Visiting Associate. [Caltech story]

Tags: APhMS research highlights GALCIT MCE Julia Greer Dennis Kochmann Carlos Portela

Professor Julia R. Greer Named Director of the Kavli Nanoscience Institute

10-03-19

Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering, has been named the Fletcher Jones Foundation Director of the Kavli Nanoscience Institute (KNI). Greer replaces professors Oskar Painter and Nai-Chang Yeh, who served together as co-directors. "I am delighted to begin spearheading the wonderful enterprise of the KNI, humbly following the footsteps of my predecessors, professors Painter and Yeh. I have been a KNI member and on the board of directors since shortly after I arrived at Caltech," Greer says. [Caltech story]

Tags: APhMS honors MedE MCE Julia Greer

Professor Greer Receives the AAAFM Heeger Award

06-24-19

Julia R. Greer, Professor of Materials Science, Mechanics and Medical Engineering, has received the American Association for Advances in Functional Materials (AAAFM) Heeger Award for her pioneering research in creating and applying multi-scale 3D architected materials in chemical and biological devices, ultra-light weight energy storage systems, damage-tolerant fabrics, and additive manufacturing. [Award announcement]

Tags: honors MCE Julia Greer MatSci

New Materials Exhibit Split Personality

02-01-19

Julia Greer, Professor of Materials Science, Mechanics and Medical Engineering, and colleagues have determined that the failure of architected materials—the point at which they break when compressed or stretched—can be described using classical continuum mechanics, which models the behavior of a material as a continuous mass rather than as individual (or "discrete") particles. This finding implies a duality to the nature of these materials—in that they can be thought of both as individual particles and also as a single collective. [Caltech story]

Tags: APhMS research highlights MCE Julia Greer

Caltech Awarded Federal Funding for Quantum Research

09-25-18

EAS Professors were among a small group of Caltech scientists and engineering who have won federal grants for research in quantum computing, and quantum networks. Professor Nadj-Perge (lead PI) along with co-PIs Professors Marco Bernardi and Andrei Faraon as well as co-investigator Professor Julia Greer have received funding for the program ”Quantum States in Layered Heterostructures Controlled by Electrostatic Fields and Strain," which is administered within the U.S. Department of Energy's Basic Energy Sciences division. Professor Austin Minnich is a co-PI of the program, "Quantum simulation of materials and molecules using quantum computation," which is part of the National Science Foundation's Research Advanced by Interdisciplinary Science and Engineering (RAISE)-Transformational Advances in Quantum Systems (TAQS) effort. [Caltech story]

Tags: APhMS research highlights MCE Julia Greer Austin Minnich Andrei Faraon Marco Bernardi Stevan Nadj-Perge

Building Better Batteries

12-19-16

Julia R. Greer, Professor of Materials Science and Mechanics, and colleagues have measured for the first time the strength of lithium metal at the nano- and microscale, a discovery with important implications for suppressing dendrite formation and improving lithium-ion batteries.  [Caltech story]

Tags: APhMS research highlights MedE MCE Julia Greer

Professor Greer Named National Security Science and Engineering Faculty Fellow

03-25-16

Julia R. Greer, Professor of Materials Science and Mechanics, has been chosen as a 2016 class of National Security Science and Engineering Faculty Fellow. The program awards grants to outstanding scientists and engineers at U.S. universities to conduct long-term, unclassified, basic research of strategic importance to the Defense Department. Professor Greer will conduct research in the area of Nano-architected Meta-materials. 

Tags: APhMS honors MedE MCE Julia Greer

Tiny Diatoms Boast Enormous Strength

02-08-16

Researchers in the lab of Julia R. Greer, Professor of Materials Science and Mechanics, have recently found that diatom shells have the highest specific strength—the strength at which a structure breaks with respect to its density—of any known biological material, including bone, antlers, and teeth. [Caltech story]

Tags: APhMS research highlights MedE MCE Julia Greer

Atomic Fractals in Metallic Glasses

09-18-15

Julia R. Greer, Professor of Materials Science and Mechanics, and colleagues including graduate student David Chen have shown that metallic glasses has an atomic-level structure although it differs from the periodic lattices that characterize crystalline metals. "Our group has solved this paradox by showing that atoms are only arranged fractally up to a certain scale," Greer says. "Larger than that scale, clusters of atoms are packed randomly and tightly, making a fully dense material, just like a regular metal. So we can have something that is both fractal and fully dense." [Caltech story]

Tags: APhMS research highlights MedE MCE Julia Greer David Chen