Untangling the Heat Paradox Along Major Faults

Nadia Lapusta, Lawrence A. Hanson, Jr., Professor of Mechanical Engineering and Geophysics, and graduate student Valère Lambert, seek to explain the size of the forces acting on "mature faults"—long-lived faults along major plate boundaries like the San Andreas Fault in California—in an effort to better understand the physics that drive the major earthquakes that occur along them. Understanding the physics that govern major earthquakes on different types of faults will help generate more accurate forecasts for earthquake threats. "We have a lot of data from large earthquakes along subduction zones, but the last really major earthquakes along the San Andreas were the magnitude-7.9 Fort Tejon quake in 1857 and the magnitude-7.9 San Francisco Earthquake in 1906, both of them before the age of modern seismic networks," Lapusta says. [Nature article] [Caltech story]

Tags: research highlights MCE Nadia Lapusta Valère Lambert

Professor Nadia Lapusta

Professor Nadia Lapusta

Valère Lambert

Valère Lambert