James K. Knowles Lectures
and Caltech Solid Mechanics Symposium


Friday, May 4, 2018
135 Gates•Thomas, Jim Sandy Hall Auditorium

See Event Schedule

The 8th annual James K. Knowles Lectures and Caltech Solid Mechanics Symposium will be held on Monday, February 13, 2017, in the Jim & Sandy Hall Auditorium in Gates•Thomas. The James K. Knowles Lectures will feature four speakers followed by the Solid Mechanics Symposium with presentations by current Caltech graduate students and postdocs.

The Lectures and Symposium are in memory of James K. Knowles, William J. Keenan, Jr. Professor of Applied Mechanics, Emeritus, who passed away on November 1, 2009. He is well known for his research contributions to the theory of nonlinear elasticity and the mathematical theories of materials and structures. Dr. Knowles inspired and influenced generations of students and scholars and authored over one hundred journal publications, as well as a textbook for graduate students entitled Linear Vector Spaces and Cartesian Tensors (Oxford University Press).

The Lectures and Symposium will be held annually and are made possible by the Division of Engineering and Applied Science and the support of family, friends and colleagues through donations to the James K. Knowles Memorial Fund.

James K. Knowles Lectures

Ellen Arruda

Professor of Biomedical Engineering and Professor, Program in Macromolecular Science and Engineering
University of Michigan

Ellen Arruda

Experimental Characterization, Constitutive Modeling, and Computational Simulations of the Soft Tissues of the Knee

Injuries in soft tissues of the knee such as the anterior cruciate ligament (or ACL) and the femoral and tibial cartilages occur in elite athletes and weekend warriors alike. A long-term goal of my work in this area is to prevent many of these injuries. Not enough work has been done to understand the finite deformation response of these non-linear, anisotropic poro-visco-elastic tissue structures - not to mention how they fail. This talk will focus on our recent efforts to characterize the ACL response utilizing full-field displacement measurement techniques that offer more accurate, repeatable, and comprehensive experimental data than traditional testing methods. We've pioneered full-volume characterization techniques that provide much needed insight into the inaccuracies associated with many current experimental protocols and also the shortcomings of some popular constitutive models in capturing the full 3D response of the ACL. I will describe how we use these data to develop constitutive models for soft tissues and implement them into computational models of the knee for gait analysis and impact loading simulations. I will also discuss how these models may be used to guide clinical practice to determine the best course of action to repair an injury.

Vikram Deshpande

Professor in Materials Engineering
University of Cambridge

Vikram Deshpande

The Homeostatic Ensemble for Cells

Cells are quintessential examples of out-of-equilibrium systems but they maintain a homeostatic state over a timescale of hours to days. As a consequence, the statistics of all observables is remarkably consistent. A statistical mechanics framework for living cells is presented, developed by including the homeostatic constraint over the interphase period of the cell cycle. The framework includes concepts of a homeostatic ensemble as well as temperature and is used to rationalise a (dynamic) homeostatic equilibrium that intervenes to allow cells to evade thermodynamic decay. The application of the statistical mechanics formalism will be illustrated with two examples along with the associated experimental evidence: (i) the contact guidance of cells on substrates patterned with fibronectin lines and (ii) the mechano-sensitivity of cells. These problems are solved using a combined finite element and Markov Chain Monte Carlo (MCMC) scheme with a model for the cell accounting for the stress-fibre cytoskeleton and cell elasticity. The predictions, in line with observations, are inherently statistical in nature and presented in terms of probability distributions of a range of observables including cell area, shape, tractions and cytoskeletal arrangements. We thus argue the variabilities of these observables are a consequence of the fluctuations of cells over their homeostatic state and these fluctuations govern a range of physiological responses. For example, the contact guidance of cells on fibronectin lines much larger than the cell size is a form of nematic ordering arising from these fluctuations.

Event Program

Time Speaker Title
9:00–9:50am Ellen Arruda
Plenary Speaker
Experimental Characterization, Constitutive Modeling, and Computational Simulations of the Soft Tissues of the Knee
9:50–10:40am Vikram Deshpande
Plenary Speaker
The Homeostatic Ensemble for Cells
10:40–11:10am Coffee
11:10–11:30am Arnold Deffo A Method of Monopoles for Dislocation Dynamics
11:30-11:50am Ottman Tertuliano Measuring the Fracture Toughness of Bone at the Microscale
11:50–12:10pm Greg Philpot A Quasicontinuum Theory for the Nonlinear Mechanical Response of General Periodic Truss Lattices
12:10–12:30pm Stella Brach Effective Toughness of Elastic-Plastic Heterogeneous Materials: Phase-Field Computations
12:30–2:00pm Lunch
2:00–2:20pm Valere Lambert Energy Budget of Dynamic Shear Ruptures: Connecting Remote Observations with Local Behavior
2:20–2:40pm Danilo Kusanovic Reduced Model for Soil-Structure Interaction of Building Systems
2:40–3:00pm Liuchi Li Granular Material Simulatioo: Can Discrete Bement Method Quantitatively Predict Inter-Particle Forces?
3:00–3:20pm Louisa Avellar Crack Propagation in Heterogeneous Materials
3:20–3:50pm Coffee
3:50–4:10pm Jin Yang Fast Adaptive Global Digital Image Correlation
4:10-4:30pm Yuchen Wei Origami Inspired Piezoelectric Foldable Thin Shells
4:30–4:50pm Paolo Celli Instabilities of Non-periodic Perforated Sheets
4:50-5:10pm Jinwoong Cha Tunable Nanoelectromechanical Lattices
5:10pm Social

All of the events are open to the Caltech community and friends and colleagues of James K. Knowles.


James K. Knowles Lectures

Lynn Seymour, Department Administrator
Telephone: (626) 395-4107